If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-28x+60=0
a = 2; b = -28; c = +60;
Δ = b2-4ac
Δ = -282-4·2·60
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{19}}{2*2}=\frac{28-4\sqrt{19}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{19}}{2*2}=\frac{28+4\sqrt{19}}{4} $
| 8(1+7x)=400 | | 4n-11=55 | | 4-9=2x+15 | | -10(k-1)=-8k+6 | | 4+4x-4=4 | | 24=8x+7 | | 5x-28=2(2x+5) | | 4(x+12)=12(x+4) | | 7(5+h)=3h | | 2(x+7)=2x-12 | | 6(14-7)=x | | 7=s/4+4 | | a-2+2=-6 | | 11x-27=2(5x+4) | | 5^{w+3}=17 | | 100-2x=-2(x+50) | | 3-2m+1=12 | | 2x+23=6x−41 | | -x-2+3=-5 | | 5(3x2x)=10x-4 | | 2+3{2(x-2)+1}=13-2(x-6) | | 11x-5=11x+7 | | 12m-4=4+4 | | -6x=95 | | a+(-15)=-21 | | −68+x=−50 | | 25=12/y | | 2.5+w=-20 | | 9(x+6)=-207. | | 10-6u=7u | | 48÷6=b | | 11x-82=10x+62 |